Septentrio Company & Technology

Allsat Open Conference

June 22, 2006

Michael Francois FP6 Galileo Projects Manager

Septentrio satellite navigation

Septentrio Technology

Septentrio Products and Applications

Septentrio and Galileo

Working with Septentrio

Company overview

MISSION

Design, develop & commercialize Professional GNSS Receivers

Based on the Company's proprietary satellite navigation technology

- Spin-off of IMEC, Europe's premier independent microelectronics R&D center – http://www.imec.be
- Leading European developer of professional GPS/EGNOS and receivers for all Galileo services
- Septentrio: a recognized European center of excellence for complete GNSS receiver manufacturing

Septentrio Technology

Septentrio Products and Applications

Septentrio and Galileo

Working with Septentrio

June 22, 2006 4

Septentrio Technology

Septentrio owns IP and competence for all critical building blocks required for receiver design.

Proprietary Septentrio Technology includes

- Digital baseband on ASICs or flexible FPGA platforms
- Discrete AFE designs and RF ASICs
- Algorithms
 - Tracking algorithms for superior sensitivity
 - Innovative tracking algorithms for Galileo signals
 - Patent pending A Posteriori Multipath Estimator (APME)
 - # High precision static positioning, RTK and attitude algorithms
 - RAIM ...

Septentrio Technology

Septentrio Products & Applications

Septentrio and Galileo

Working with Septentrio

PolaRx – Flexible platform

Septentrio satellite navigation

- State-of-the-art GPS L1/L2 Receivers
- Fully EGNOS/WAAS capable
- 48 HW channels can be flexibly assigned
- Integration and communication (LINUX, Ethernet, on board logging)

- Single board multiantenna/heading/attitude
- Expansion board via PCI (for L2C)
- Advanced geodetic features
- Easy to use and accompanied by excellent documentation

PolaRx - High-end Performance Septentric

High accuracy positioning (1σ)

- Stand-Alone Position:
 - Horizontal1.1 m
 - Vertical 1.9 m
- Stand-Alone Velocity:
 - Horizontal1.5 mm/s
 - Vertical 1.9 mm/s
- SBAS Position:
 - + Horizontal0.7 m
 - Vertical 1.2 m
- A RTK
 - Horizontal0.3 cm + 0.5 ppm
 - Vertical 0.6 cm + 1ppm
 - Avg time to fix (10 km baseline): 7 sec

PolaRx2/2e Family

- PolaRx2 SBAS

GPS/EGNOS/WAAS

Up to 6 concurrent GEO channels

Extensive extra SBAS functionality

- PolaRx2 OEM

Flexible OEM-card platform for variety of applications

- PolaRx2@

Compact single board multi-antenna/attitude receiver

Raw data, heading and attitude from up to 3 antennas at up to 10 Hz

- PolaRx2TR

Highly accurate geodetic and Precise Timing receiver Very low measurement noise, high tracking sensitivity, low cycle slip count

CORS application: LINUX core, Ethernet connectivity, remote mgt and logging...

Septentrio Technology

Septentrio Products and Applications

Septentrio and Galileo

Working with Septentrio

The Case for Galileo

"GPS alone is good enough. Why need Galileo?"....

- Availability
 - One system provides 50% availability
 - Two systems: availability 95% (nominal constellations)
 - More availability essential for every user segment (mass market to professional)
 - Combined receivers will be the standard
- Accuracy
 - Improved accuracy thru better DOP and better signals
- Integrity
 - Built-in new capability which does not exist on GPS
 - You can trust what you read

An exciting Galileo track record

- + High-Level Working Group on GNSS-2
 - # Early concepts, architecture, funding model...
- Founding Member of Galileo Services
 - Promoting a strategic project in Europe and around the world
- Participating in Galileo Receiver Design since beginning
 - 2001 Receiver Requirements
 - 2002 Reference Receiver Design
 - **4** 2004 Delivered first Galileo receiver model to ESA
 - **2005 ESA Contract for Test User Receivers**
 - 2005 Delivered GSTBv2 receivers, first ever to capture Galileo signal from space
- January 12, 2006: first-ever Galileo signals received
- Numerous projects for receiver development & testing

Galileo development activities

Engineering contracts:

- Prime contractor for ESA Galileo Test User Segment
 - Building and testing receivers for all services
 - Leading a consortium of 7 European companies: QinetiQ (UK), TU Delft (NL), Ursa Minor (NL), OMP (B), Deimos (E), Skysoft (P)
 - Contract till In-Orbit Validation (IOV)
- Septentrio leading and participating in various FP6
 Galileo receiver and application projects:
 - Leading Professional Receiver Development (SWIRLS) with Allsat
 - Participating to Maritime and Aviation application projects
 - http://www.gju-swirls.com

GIOVE-A: The first ever Galileo signal from space

Satellite successfully launched December 28, 2005

First signals received on January 12, 2006

with Septentrio Galileo Experimental Test Receiver

(GETR)

First commercially available GPS/Galileo Receiver

- Ready to receive signals from first Galileo satellites (end 2005)
- All Galileo signals supported
- Incl GPS dual-frequency receiver
- Support for GPS L5
- Technology used for testing GSTBv2 satellites
- Includes GUI and advanced user and development tools (incl. IF samples)
- Upgradable to IOV constellation

Introducing AsteRx1

Septentrio satellite navigation

High-quality compact single frequency OEM board for high-end applications

- 24 SV, Generic Channel design : GPS L1 CA - Galileo BOC(1,1) – SBAS L1
- Code and carrier phase measurements
- Low measurement noise
- High-quality PVT
- Single-frequency RTK
 - float : 20 cm (horizontal) after convergence
- + High update rate (up to 50 Hz) / low latency (< 10 ms independent of update rate)</p>
- ⊕ Low power < 1W</p>
- ⊕ 3 COM ports, USB 2.0

Interfaces

Septentrio Satellite navigation

17

- USB 2.0 full-speed device interface
- 3 high-speed COM ports:
 - ◆ full RS232 or
 - ⊕ Rx/Tx LVTTL
- GPIO for
 - 2 event-inputs
 - Programmable PPS-out
 - Tracking/PVT/... Status
 - Φ ...
- All interfaces available via 2 x 40 pins socket (SAMTEC SFM-family)

Easy to integrate

Septentrio satellite navigation

- Dimensions: apx 55 x 75 mm, 28 gr
- ₱ 5 VDC ±5% power supply, < 1 W
 </p>
- Innovative power management :
 - # 3 power modes: ON / Sleep (max 2 mW) / OFF
 - Wake-up from sleep:
 - Scheduled wake-up
 - COM-port activity
 - Wake-up pin
- Many configuration possibilities for flexible operation and integration
- Powerful command language, various output formats (binary and Ascii)
- MMCX antenna connector, antenna power supply, protected against short etc

Septentrio Technology

Septentrio Products and Applications

Septentrio and Galileo

Working with Septentrio

Septentrio the strategic partner for GNSS business

- GNSS expertise over the full development cycle
 - Unique in Europe
 - Experience in commercial professional receivers and applications
- Unmatched experience and track record in Galileo receiver development:
 - First-ever Galileo signals received with Septentrio receivers
 - Prime Contractor for IOV Test User Segment
 - Coordinator for FP6 Professional Receiver Development
- Flexible and customer-oriented team

Septentrio: your strategic partner for GPS/Galileo receivers

Please visit Septentrio at ION GNSS 2006

Fort Worth, Texas - September, 2006

http://www.ion.org

+32 16 300 800 peter.grognard@septentrio.com

Please visit our website

www.septentrio.com